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Strongly Connected Components (SCC)

® |n a directed graph, an SCC is a maximally
connected subgraph with a path in both
directions between any two nodes
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SCC on Large Graphs

m Datasets contain millions to billions of nodes (n)
and billions of edges (m)

m Fastest sequential SCC algorithms require
O(n + m) work

—> SCC on large graphs is time-consuming

Solution: PARALLELIZE!



Existing Algorithms

m Optimal sequential algorithm
m Tarjan’s Algorithm [Tarjan, SIAM 1972]

= Cannot be parallelized effectively due to depth-first
search (DFS)

m Forward-Backward-Trim parallel algorithm
= Recursive application of reachability
[Fleischer et al., IPDPS 2000]

m Trim of trivial SCCs
[McLendon et al., Parallel & Dist. Computing 2005]



FW-BW-Trim Algorithm: Reachability

® Node a is reachable from node b if there is a
path from b to a




FW-BW-Trim Algorithm: Reachability

m Four partitions
s FW, (i) N BW,(i) [SCC]
o FW4(i) \ BW; (i)
= BW; (D) \ FW; (D)
s V\ (FWe (@) U BW; (D))
m Additional SCCs must
be completely contained

within one of the three _"=¢
additional partitions




FW-BW-Trim Algorithm: Reachable Set
Recursion

m Recursively apply the
algorithm to each of the
three partitions created
besides the pivot’'s SCC

m Utilizes task
parallelism

Graph G



FW-BW-Trim Algorithm: Trimming

m Can identify trivial SCCs (size |) by looking only
at the number of neighbors

= If the node has in-degree=0 or out-degree=0, it is a

size | SCC @

m Repeat iteratively

® Implement in parallel
on disconnected nodes



FW-BW-Trim Algorithm

Apply Algorithm 1: FW-BW-Trim(G, SCC)

iterative Trim

. In-Out: G: a graph (a subgraph of the original input graph)
step

In-Out: SCC'": a collection of node sets; each set corresponds
to an SCC of the original graph
Choos.e ANY Trim(G, SCC)
UCECURUERL  if | Nodes(G)| = O then return;
graph u < pick any node in G /* pivot */
FW <+ Forward-Reach(G, u)
Calculate BW + Backward-Reach(G, )
forward & S+ FWnNBW
backward sets SCC + SCCu{Ss}
begin in parallel
FW-BW-Trim(FW \ S, SCC')
FW-BW-Trim(BW \ S, SCC)
FW-BW-Trim(G \ (F'W U BW), SCC)

Recursively apply
algorithm to each

partition

New SCC is
intersection
of FW & BW

sets
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Real-World Graphs and the
Small-World Property

m Social networks, web graphs, citation networks

m Relevant properties
= Small-world property (small diameter)
= Giant SCC size O(N)
m Skewed SCC size distribution
s Small SCCs are more frequent than large SCCs



Example Small-World Graph:
LiveJournal

m N =4,848,571; M = 68,993,773
m Estimated diameter = |8
m Largest SCC size = 3,828,682 (79% of all nodes)
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Shortcomings of the FW-BW-Trim
Algorithm

m High probability that we initially pick a pivot
node in the giant SCC

m Giant SCC is likely identified at the beginning by
a single thread

m Other threads idle because no other tasks yet

- Workload imbalance

—> Insufficient parallelism



Our Algorithm Extensions
Method |: Two-Phase Parallelization

m Adds data parallelism

= All threads work on the same partition of the graph to
find reachable sets

m Implement with parallel breadth-first search (BFS)



Method |: Two-Phase Parallelization

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)



Shortcomings of Method |

m |nsufficient tasks in the task parallel recursive
FW-BW step
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Method 2: Weakly Connected
Components (WCC)

®m Now each WCC is a separate parallel task

—> Significantly increases parallelism in recursive
FWBWY step

20



Method 2: Weakly Connected
Components (WCC)

® |n a directed graph, a WCC is a maximally
connected subgraph with a path in one direction
between any two nodes

21



Method 2: Trim2

m Parallel detection of a subset of size 2 SCCs
= Tight loop between nodes A and B

= No other outgoing (or incoming) edges from A and B

. 4
0000

m Apply only once rather than iteratively

= Higher computational cost than Trim
m Reduces execution time of WCC step by up to 50%

22



Method 2: WCC + Trim2

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

Method2(G):

// Data parallel
Trim(G) _
Par-FWBW(G) | Trim(G)
Trim’ (G) =< Trim2(G)
Par-WCC(G) (Trim(G)
// Task parallel
Recur-FWBW(G)
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Experimental Datasets

® Online social networks
= Flickr
= Friendster*
= Twitter
s Orkut*
® Web link networks
= LiveJournal
= Baidu
» Wikipedia
m Citation
= US Patents
® Non small-world
s CA-road*

*the original graph is undirected; we randomly assign a direction for each edge with 50% probability for
each direction 25



Experimental Setup

m Commodity server
= 2 Intel Xeon E5-2660 (2.20GHz) CPUs

m Total of 16 cores and 32 hardware threads

= Total of 20 MB of last-level cache and 256 GB of
main memory

m OpenMP threading library

26



Algorithm Recap

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

Method2(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim’ (G)
Par-WCC(G)

// Task parallel
Recur-FWBW(G)

27



Parallel Speedup Results vs. Tarjan’s Alg.
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Parallel Speedup Results
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Method 2 = Method |
Results: Friendster
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SCC Count

Method 2 = Method |
Results: Friendster
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Method 2 > Method |
Results: LiveJournal
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Method 2 > Method |

Results
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Tarjan > Methods 1&2

Results: CA-road
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Tarjan > Methods |&2
Results: CA-road
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Conclusions

® We extend the FW-BW-Trim parallel SCC
detection algorithm by taking advantage of
small-world graph properties

m Result: Significant parallel speedup on
small-world graphs
= Speedup from 5x to 29.4x
m Mean speedup 14x
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Questions?

Thank you

Questions: nrodia@stanford.edu

Code available from: www.stanford.edu/~nrodia
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