[(L) PERVASIVE '
- 3 PARALLELISH I
(gl] LABORATORY Lo

Fast Parallel Detection of
Strongly Connected Components (SCC) in
Small-World Graphs

Sungpack Hong?, Nicole C. Rodia', and Kunle Olukotun'

'Pervasive Parallelism Laboratory, Stanford University

2Qracle Labs

PPL Retreat — January 25, 2014

Outline

m SCC Background and Motivation

m Shortcomings of Existing Algorithm and

Our Solutions

m Experimental Results

=

Twitter' 215 million monthly active use’ksﬁ

% .+ . 500 millionTweets per day

fE, Ly a

i E R . * "
1 #

i Lt o

i {
e . =

¥ . { "-f‘-_'r"

i ® G B BT

i 0 : s o’
-y] a ! & X

DA i i T
*

- ¥

Source: Eric Fischer via Flickr and Twitter IPO 'FiIing. % 'L;*";;Eﬁ
: : R

Example: TW|tter SCGCs

,—-_ —

Strongly Connected Components (SCC)

® |n a directed graph, an SCC is a maximally
connected subgraph with a path in both
directions between any two nodes

— T

SCC on Large Graphs

m Datasets contain millions to billions of nodes (n)
and billions of edges (m)

m Fastest sequential SCC algorithms require
O(n + m) work

—> SCC on large graphs is time-consuming

Solution: PARALLELIZE!

Existing Algorithms

m Optimal sequential algorithm
m Tarjan’s Algorithm [Tarjan, SIAM 1972]

= Cannot be parallelized effectively due to depth-first
search (DFS)

m Forward-Backward-Trim parallel algorithm
= Recursive application of reachability
[Fleischer et al., IPDPS 2000]

m Trim of trivial SCCs
[McLendon et al., Parallel & Dist. Computing 2005]

FW-BW-Trim Algorithm: Reachability

® Node a is reachable from node b if there is a
path from b to a

FW-BW-Trim Algorithm: Reachability

m Four partitions
s FW, (i) N BW,(i) [SCC]
o FW4(i) \ BW; (i)
= BW; (D) \ FW; (D)
s V\ (FWe (@) U BW; (D))
m Additional SCCs must
be completely contained

within one of the three _"=¢
additional partitions

FW-BW-Trim Algorithm: Reachable Set
Recursion

m Recursively apply the
algorithm to each of the
three partitions created
besides the pivot’'s SCC

m Utilizes task
parallelism

Graph G

FW-BW-Trim Algorithm: Trimming

m Can identify trivial SCCs (size |) by looking only
at the number of neighbors

= If the node has in-degree=0 or out-degree=0, it is a

size | SCC @

m Repeat iteratively

® Implement in parallel
on disconnected nodes

FW-BW-Trim Algorithm

Apply Algorithm 1: FW-BW-Trim(G, SCC)

iterative Trim

. In-Out: G: a graph (a subgraph of the original input graph)
step

In-Out: SCC'": a collection of node sets; each set corresponds
to an SCC of the original graph
Choos.e ANY Trim(G, SCC)
UCECURUERL if | Nodes(G)| = O then return;
graph u < pick any node in G /* pivot */
FW <+ Forward-Reach(G, u)
Calculate BW + Backward-Reach(G,)
forward & S+ FWnNBW
backward sets SCC + SCCu{Ss}
begin in parallel
FW-BW-Trim(FW \ S, SCC')
FW-BW-Trim(BW \ S, SCC)
FW-BW-Trim(G \ (F'W U BW), SCC)

Recursively apply
algorithm to each

partition

New SCC is
intersection
of FW & BW

sets

Outline

m SCC Background and Motivation

m Shortcomings of Existing Algorithm and

Our Solutions

m Experimental Results

Real-World Graphs and the
Small-World Property

m Social networks, web graphs, citation networks

m Relevant properties
= Small-world property (small diameter)
= Giant SCC size O(N)
m Skewed SCC size distribution
s Small SCCs are more frequent than large SCCs

Example Small-World Graph:
LiveJournal

m N =4,848,571; M = 68,993,773
m Estimated diameter = |8
m Largest SCC size = 3,828,682 (79% of all nodes)

N

T I| q T T | T T I| T T I| T T T T
109 10! 10?2 10° 10% 10° 10° 107
SCC Size

Shortcomings of the FW-BW-Trim
Algorithm

m High probability that we initially pick a pivot
node in the giant SCC

m Giant SCC is likely identified at the beginning by
a single thread

m Other threads idle because no other tasks yet

- Workload imbalance

—> Insufficient parallelism

Our Algorithm Extensions
Method |: Two-Phase Parallelization

m Adds data parallelism

= All threads work on the same partition of the graph to
find reachable sets

m Implement with parallel breadth-first search (BFS)

Method |: Two-Phase Parallelization

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

Shortcomings of Method |

m |nsufficient tasks in the task parallel recursive
FW-BW step

BW Q@Q\ BW
Qg\Q O\O ofe
o - ~,’ ‘)‘ ‘\v .
..... A The
g?\ Giant . AG g O
~ sce,): O O

s__k

_>—r

\h

Mostly disconnected
SCCs

Method 2: Weakly Connected
Components (WCC)

®m Now each WCC is a separate parallel task

—> Significantly increases parallelism in recursive
FWBWY step

20

Method 2: Weakly Connected
Components (WCC)

® |n a directed graph, a WCC is a maximally
connected subgraph with a path in one direction
between any two nodes

21

Method 2: Trim2

m Parallel detection of a subset of size 2 SCCs
= Tight loop between nodes A and B

= No other outgoing (or incoming) edges from A and B

. 4
0000

m Apply only once rather than iteratively

= Higher computational cost than Trim
m Reduces execution time of WCC step by up to 50%

22

Method 2: WCC + Trim2

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

Method2(G):

// Data parallel
Trim(G) _
Par-FWBW(G) | Trim(G)
Trim’ (G) =< Trim2(G)
Par-WCC(G) (Trim(G)
// Task parallel
Recur-FWBW(G)

23

Outline

m SCC Background and Motivation

m Shortcomings of Existing Algorithm and

Our Solutions

m Experimental Results

24

Experimental Datasets

® Online social networks
= Flickr
= Friendster*
= Twitter
s Orkut*
® Web link networks
= LiveJournal
= Baidu
» Wikipedia
m Citation
= US Patents
® Non small-world
s CA-road*

*the original graph is undirected; we randomly assign a direction for each edge with 50% probability for
each direction 25

Experimental Setup

m Commodity server
= 2 Intel Xeon E5-2660 (2.20GHz) CPUs

m Total of 16 cores and 32 hardware threads

= Total of 20 MB of last-level cache and 256 GB of
main memory

m OpenMP threading library

26

Algorithm Recap

FW-BW-Trim(G):
// Data parallel
Trim(G)

// Task parallel
Recur-FWBW(G)

Methodl1(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim(G)

// Task parallel
Recur-FWBW(G)

Method2(G):

// Data parallel
Trim(G)
Par-FWBW(G)
Trim’ (G)
Par-WCC(G)

// Task parallel
Recur-FWBW(G)

27

Parallel Speedup Results vs. Tarjan’s Alg.

HN-BW—Trlm —— ME-T_I"H}EI 1 — - M,E.T_md 2 ‘l--ll-‘-ll--l‘
16 ; : 16 : : : :

= LiveJournal 1 o - Flickr 121 Baidu

10

8 T
: : e B b R SSTUS S
10 i : e /S SR S ,,* Y/ B S ‘

Speedup

=

(8}

I

3

Speedup
Speedup
[ns}
I

-

I e e et S PEctseribieet
il 4 “— 2 ameemn - ; ; T i "
B I AR A 0 "————-—-g—-—-l—'j“r"'-'!'g'ﬁ"r'-‘g"—-—r' I 0 | e— TR W R A SR AR

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Num. Threads Num. Threads Num. Threads

o Wikipedia 1 o ®[Friendster .-

2| - Twitter .~
10 . - .;“.‘:.:_';ﬁ_'.':-_--__-:'

Speedup
5
Speedup

,,,,,

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Num. Threads Num. Threads Num. Threads

20 Orkut 7] »[Patents s CA-road

10 _.“..@”.;?ﬁ?ﬂ...?..”.“}”..._

Speedup
"

A
Speedup
Speedup

=

1 2 4 8 16 32

28

Num. Threads Num. Threads Num. Threads

Parallel Speedup Results

Speedup

FW-BW-Trim =

LiveJournal

Num. Threads

Speedup

= Friendster ..~

15 -

Method 1 —#&- Method 2 ==-M-=-

/ﬁ_,/.‘

1 2 4 8 16 32
Num. Threads

1.5

Speedup
=
I

05 F ”g.'.'..'.f..'.&-?-'-'--"“

1 2 4 8 16
Num. Threads

32

29

Method 2 = Method |
Results: Friendster

FW-BW-Trim —+—

Speedup

30
25
20
15

Method 1 = -

: o :
r.l.

1 2 4 8

Num. Threads

30

SCC Count

Method 2 = Method |
Results: Friendster

Par-Trim' I Recur-FWBW FE5F
Par-wcc [Tarjan %854

rggﬁﬁm %ﬁmm

AR R

*

)

e

Par-Trim 71
Par-FWBW
: 120000
10°(
107 = 100000 |-
1008 = g
105 - = 80000
104 5 S
; — 60000 |
103 - = i
102 3 8 40000 H .
10" 3 5 200 7
107 8y) DLl
100 10! 10?2 10% 104 10° 105 107 108 0 n =
SCC Size EW-

1248182 124812 1
Methodl Method2 Tarjan

31

Method 2 > Method |
Results: LiveJournal

FW-BW-Trim —+—

Speedup

30
25
20

Method 1 = -

*
-
-

Num. Threads

32

Method 2 > Method |

Results

LiveJournal

Par-Trim' Il Recur-FWBW [E5

Par-wcc [

Par-Trim 2271

Par-PWBW [l

Tarjan 234

TR

o 0 D 0 0 0 O 0 O e N O DG e 6 M)

\/2 4 81632
Methodl

12481632 1
Method2 Tarjan

3000

2500

(swi) awn uonhoax3y

2000

U
L
—

4. \(lw
* *

&

[{=]
o
i

K
Ty

o

—

.UD.U
= =

junod 20S

D
—

L]
o
i

102 108 104 10° 10° 107

101!

(=]
o
—

12481632

FW-BW-Trim

SCC Size

33

Tarjan > Methods 1&2

Results: CA-road

FW-BW-Trim —+— Method 1 — -

2

Speedup

Num. Threads

34

Tarjan > Methods |&2
Results: CA-road

III|III|III|III|III|I.AII

SCC Size

e (ms)

m

Execution

2500

)
o
o
o

; 1500

=
Q
o
o

500

Par-Trim 71
Par-FWBW Eosss]

Par-Trim' I Recur-FWBW 50
ParwcC [Tarjan 2%

.‘
o,

5 % N PANEES B
12481632 12481632 12481632 1
FW-BW-Trim Methodl Method2 Tarjan

35

Conclusions

® We extend the FW-BW-Trim parallel SCC
detection algorithm by taking advantage of
small-world graph properties

m Result: Significant parallel speedup on
small-world graphs
= Speedup from 5x to 29.4x
m Mean speedup 14x

36

Questions?

Thank you

Questions: nrodia@stanford.edu

Code available from: www.stanford.edu/~nrodia

37

	Fast Parallel Detection of �Strongly Connected Components (SCC) in Small-World Graphs
	Outline
	Large Graphs
	Example: Twitter SCCs
	Strongly Connected Components (SCC)
	SCC on Large Graphs
	Existing Algorithms
	FW-BW-Trim Algorithm: Reachability
	FW-BW-Trim Algorithm: Reachability
	FW-BW-Trim Algorithm: Reachable Set Recursion
	FW-BW-Trim Algorithm: Trimming
	FW-BW-Trim Algorithm
	Outline
	Real-World Graphs and the �Small-World Property
	Example Small-World Graph: LiveJournal
	Shortcomings of the FW-BW-Trim Algorithm
	Our Algorithm Extensions�Method 1: Two-Phase Parallelization
	Method 1: Two-Phase Parallelization
	Shortcomings of Method 1
	Method 2: Weakly Connected Components (WCC)
	Method 2: Weakly Connected Components (WCC)
	Method 2: Trim2
	Method 2: WCC + Trim2
	Outline
	Experimental Datasets
	Experimental Setup
	Algorithm Recap
	Parallel Speedup Results vs. Tarjan’s Alg.
	Parallel Speedup Results
	Method 2 = Method 1�Results: Friendster
	Method 2 = Method 1�Results: Friendster
	Method 2 > Method 1�Results: LiveJournal
	Method 2 > Method 1�Results: LiveJournal
	Tarjan > Methods 1&2�Results: CA-road
	Tarjan > Methods 1&2�Results: CA-road
	Conclusions
	Questions?
	Slide Number 38
	Backup Slides
	Previous Work
	Execution Time Breakdown
	Phase of SCC Identification Breakdown
	Baseline Algorithm: Parallel Trim
	Our Algorithm Extensions
	Potential Questions & Answers
	Potential Questions & Answers

