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Abstract—
Detecting strongly connected components (SCCs) in a

directed graph is a fundamental graph analysis algorithm
that is used in many science and engineering domains.
Traditional approaches in parallel SCC detection, however,
show limited performance and poor scaling behavior
when applied to large real-world graph instances. In this
paper, we investigate the shortcomings of the conventional
approach and propose a series of extensions that consider
the fundamental properties of real-world graphs, e.g. the
small-world property. Our scalable implementation offers
excellent performance on diverse, small-world graphs re-
sulting in a 4.44x to 23.98x parallel speedup over the
optimal sequential algorithm with 8 cores and 16 hardware
threads.

Keywords-strongly connected components (SCC); multi-
core; parallel algorithms; graph algorithms; small-world
graphs

I. INTRODUCTION

In graph theory, a strongly connected component
(SCC) of a directed graph is a maximal subgraph where
there exists a path between any two vertices in the
subgraph. Since any directed graph can be decomposed
into a set of disjoint SCCs, the study of large graphs
frequently uses SCC detection of the target graph as
a fundamental analysis step. Target real-world graphs
include the Web graph and social networks [11], [12],
[17], and those found in diverse scientific applica-
tions, including formal verification [14], reinforcement
learning [16], 3D mesh element refinement [22], and
complex food web analysis [3].

Tarjan’s algorithm [27], the classic sequential method
for SCC detection, is an asymptotically optimal linear-
time algorithm. Unfortunately, Tarjan’s algorithm is
difficult to parallelize because it extends the depth-first
search (DFS) traversal of the graph, which is inherently
sequential.

Several studies [13], [22], [9], [8] have investi-
gated parallel or distributed SCC algorithms. Fleischer
et al. [13] devised a practical parallel algorithm, the

Forward-Backward (FW-BW) algorithm, which moti-
vated further enhancements in following research. The
FW-BW algorithm achieves parallelism by partitioning
the given graph into three disjoint subgraphs which
can be processed independently in a recursive manner.
McLendon et al. [22] added a simple extension to this
algorithm, the Trim step, which resulted in a significant
performance improvement. Barnat et al. [9] proposed
another algorithm to improve the degree of parallelism
compared to the original FW-BW algorithm. However,
their method did not give a large performance improve-
ment over McLendon et al.’s when applied to real-world
graphs with few large-sized SCCs [8].

Although these algorithms show a degree of parallel
performance in distributed environments, their parallel
performance in shared-memory environments is much
lower than that of the optimal sequential algorithm,
especially when applied to large real-world graph in-
stances. As shown in this paper, this is because the char-
acteristics of real-world graphs differ substantially from
synthetic graphs, such as trees or meshes, for which
those algorithms were originally designed. Recent stud-
ies [11], [7], [28] have identified several fundamental
characteristics of real-world graphs, in particular the
small-world property (Section II-B).

In this paper, we first review McLendon et al.’s
parallel algorithm (FW-BW-Trim) before we explain
the characteristics of real-world graph instances (Sec-
tion II). Next, we introduce our series of extensions
to the conventional FW-BW-Trim algorithm, which ac-
count for those characteristics (Section III). In our ex-
periments (Section IV), we run our extended algorithm
on a set of small-world graph instances and observe the
effectiveness of each extension for the characteristics of
those instances. Our results show that our methods not
only improve the absolute performance of the original
FW-BW-Trim algorithm, but also extract a higher de-
gree of parallelism. For interested readers, we discuss
details of the implementation in the Appendix.

Our specific contributions are as follows:
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Figure 1. The two main ideas of the conventional FW-BW-
Trim algorithm: (a) Forward and Backward reachability and
(b) Trimming.

• We identify the performance limitations of the con-
ventional FW-BW-Trim algorithm on large real-
world graph instances (Sections II and III).

• We propose a set of extensions to the conventional
algorithm, which consider characteristics of those
real-world instances, including the small-world
property (Section III).

• We analyze the effect of our extensions with vary-
ing small-world graph shapes (Section IV). To our
knowledge, we demonstrate the first parallel SCC
algorithm which outperforms Tarjan’s algorithm on
a shared-memory multi-processor machine on such
graphs.

II. BACKGROUND

A. Conventional FW-BW-Trim Algorithm

In this section, we review FW-BW-Trim, a conven-
tional parallel SCC detection algorithm [22]. The FW-
BW-Trim algorithm extends its predecessor, the original
FW-BW algorithm [13], by adding the Trim step.

The original FW-BW algorithm is based on the
observations in Lemma 1 [13]. Given a directed graph
G, let FWG(i) be the subset of vertices in G which are
reachable from vertex i. Let BWG(i) be the subset of
vertices in G from which i is reachable.

Lemma 1. Let G = (V,E) be a directed graph with i ∈ V
a vertex in G. Then FWG(i) ∩ BWG(i) is a unique SCC
in G. Moreover, for every other SCC s in G, either s ⊂
FWG(i) \ BWG(i), s ⊂ BWG(i) \ FWG(i), or s ⊂ V \
(FWG(i) ∪BWG(i)).

Lemma 1 states that from any node i in graph G,
SCCG(i), the unique SCC that contains i, can be
identified from the intersection of two sets: the forward
reachable set of i and the backward reachable set of
i. Furthermore, the remaining nodes can now be par-
titioned into three subgraphs (forward reachable only,
reverse reachable only, and non-reachable) where each
subgraph can be processed independently in a recursive
manner. Figure 1(a) provides a visual explanation of this
idea.

The parallelism of the FW-BW algorithm comes from
its recursive application to each partitioning. Since there
cannot be an SCC that belongs to more than one
partition, each partition can be processed independently,
in parallel. Furthermore, since each partition produces
three additional partitions, it is expected that quickly,
there would be sufficient independent tasks to consume
all of the parallel processing elements in a system.

Parallelism from such independent tasks can be easily
exploited via work queues. Note that, however, any of
these three partitions can be an empty set; if empty
set production is the frequent case, the number of
independent tasks may grow more slowly than expected.

Algorithm 1: FW-BW-Trim(G, SCC)
Trim(G, SCC)
if |Nodes(G)| = 0 then return;
u← pick any node in G ; /* pivot */
FW ← Forward-Reach(G, u)
BW ← Backward-Reach(G, u)
S ← FW ∩BW
SCC ← push S
begin in parallel

FW-BW-Trim(FW \ S, SCC)
FW-BW-Trim(BW \ S, SCC)
FW-BW-Trim(G \ (FW ∪BW ), SCC)

end

The key observation behind the Trim [22] step is that
a trivial SCC (i.e. SCC of size one) is easy to identify:
it has either zero incoming edges or zero outgoing
edges in the current partition. Therefore, one can easily
identify such trivial SCCs only by looking at the number
of neighbors, rather than by computing two reachable
sets.

The Trim step can be repeated iteratively, since
trimming a node can cause other nodes to become trivial
SCCs, illustrated in Figure 1(b). In the figure, nodes c,
d, and e can be identified as trivial SCCs quickly, as
they have zero in- or out- degree and thus cannot form
a cycle. The trimming of node c in turn makes node b a
trivial SCC, whose trimming also makes node a trivial.

The FW-BW-Trim algorithm is described in Algo-
rithm 1; Algorithm 2 shows details of the Trim step.
Although Trim is a simple idea, it greatly improves
the performance of the previous FW-BW algorithm,
especially for real-world graphs [8]. Therefore, to un-
derstand its effectiveness, one must comprehend the
characteristics of real-world graphs.

B. Fundamental Characteristics of Real-World Graphs

Recently, it has been revealed that real-world graphs
have fundamentally different characteristics than tradi-
tional artificial graphs such as trees, meshes, or hy-
percubes [28], [7], [11], [17]. Real-world graphs are
empirical graphs in which no explicit structure has been
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Algorithm 2: Trim(G, SCC)
repeat

foreach n ∈ G do
if In-degG(n) = 0 ∨ Out-degG(n) = 0 then

SCC ← push {n}
G← G \ {n}

until G not changed

Figure 2. Distribution of SCC sizes in the LiveJournal
network.

enforced, but which naturally originate and arbitrarily
grow. Examples of such graphs are social networks,
web-graphs, citation networks, and protein molecule
interaction graphs.

Several interesting properties of these real-world
graphs have been identified so far. Of particular impor-
tance, the small-world property states that the diameter
of such graphs is very small even for very large graph
instances [28]. This is not a mere observation: it has
been shown that by simply re-wiring only a few edges
in an arbitrary way, the diameter of any graph rapidly
shrinks. This explains why the vast majority of large
real-world graphs have this property – by nature, they
are constructed from arbitrary relationships [28]. 1

Additionally, in such real-world graphs there exists
one giant SCC whose size is O(N), where N is the
number of nodes in the graph [11]. The remaining
SCCs are small-sized, and the distribution of SCC size
is skewed such that tiny-sized SCCs are much more
frequent than large-sized ones [17].

As an illustrative example, Figure 2 shows a his-
togram of the SCC sizes in a real-world graph instance,
which is the link relationship of a blog sphere named
LiveJournal [21]. This figure shows two aforementioned
characteristics of real-world graph SCC structure: the
existence of a single giant SCC and the power-law
distribution of SCC sizes. The size of the largest SCC
(3,828,682) has the same order as the number of nodes

1The exceptions are the graphs that represent physical entities, e.g.
road networks, because these graphs do not grow arbitrarily. Note that
such graphs tend to have limited sizes.

in the graph (4,847,571), and the graph has the same
order of size-1 SCCs (947,776). The large number of
size-1 SCCs explains why the simple Trim step is so
effective for SCC detection – it very quickly identifies
size-1 SCCs, which are most prevalent in real-world
graph instances.

III. OUR EXTENSIONS

In this section, we discuss our extensions to the
conventional FW-BW-Trim algorithm, which account
for the characteristics of real-world graphs.
A. Baseline Implementation using Parallel Trim

One possible parallelization strategy is to perform the
Trim operation in parallel, as shown in Algorithm 3.
Note that parallel trimming is applied iteratively, since
each trim operation may enable further trimming. To
reduce performance overhead, the algorithm performs
marking and coloring of nodes rather than directly
modifying the underlying graph.

Algorithm 3: Par-Trim(G, Color)
repeat

foreach n ∈ G, n not marked do in parallel
c← Color(n)
/* count neighbors of the same color */
if In-deg(n,c,Color) = 0 ∨
Out-deg(n,c,Color) = 0 then

Color(n)← a new color; mark n

until Color not changed

The Baseline algorithm (Algorithm 4) has two
phases: first, the graph is trimmed in parallel, and
second, the conventional recursive FW-BW algorithm
is applied. Since there are many size-1 SCCs in a real-
world graph, the parallel trim step achieves a greater
degree of parallelism.

Algorithm 4: Baseline(G, Color)
Par-Trim(G, Color) ; /* Parallel Trim */
begin recursion in parallel

FW-BW(G, Color, SCC) ; /* Recursive FW-BW */
end

B. Method 1: Two-Phase Parallelization

Section II-B introduced two properties of SCC struc-
tures in real-world graphs: (1) there exists a giant SCC
whose size is O(N) and (2) there are many small
sized SCCs, where the number of SCCs of a given
size decreases drastically as the size grows. Moreover,
studies of the SCC structure in small-world graphs
also revealed that the giant SCC can be considered
the center, to which most of the other small SCCs are
attached [11], [17].
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What is the implication of this SCC structure to the
performance of the conventional FW-BW-Trim algo-
rithm? First, it causes load imbalance in the algorithm.
The conventional implementation of the FW-BW-Trim
algorithm lets each thread find one SCC at a time,
though there exists one O(N)-sized giant SCC in the
graph. Worse, it is very likely that this giant SCC is
identified at the beginning because other small SCCs
are weakly connected to this giant SCC. Consequently,
while the large SCC is being identified by one thread,
other threads stay idle since there are no other tasks.

Based on the above observations, we adopt another
two-phase parallelization strategy. In phase 1, we exploit
data-level parallelism, letting every thread work on the
same partition of the graph; all threads are used to find
reachable sets. In phase 2, we return to the conventional
implementation, which exploits task-level parallelism.
The transition between phase 1 and phase 2 occurs
when the giant SCC has been identified (i.e. an SCC
containing, say 1% of the nodes of the original graph),
or after a predefined number of iterations.

This strategy is summarized as Method 1 in Algo-
rithm 5. Parallel FW-BW can be implemented with
parallel breadth-first search (BFS). Note that a BFS
on small-world graphs results in a small number of
BFS levels, but a large number of nodes in each level
that can be visited in parallel [15]. Also, the algorithm
applies parallel Trim once more after the Par-FW-BW
step, because detection of the giant-SCC presents an
opportunity for further trimming.

Algorithm 5: Method1(G, Color)
Par-Trim(G, Color) ; /* Parallel Trim */
Par-FW-BW(G, Color) ; /* Parallel FW-BW */
Par-Trim(G, Color) ; /* Parallel Trim */
begin recursion in parallel

FW-BW(G, Color, SCC) ; /* Recursive FW-BW */
end

C. Finding Weakly Connected Components

Method 1 in the previous subsection successfully
parallelizes detection of SCCs for most real-world graph
instances, as will be shown in the experiments (Sec-
tion IV). This occurs because most of the nodes in real-
world graphs are processed in a data-parallel phase of
the algorithm.

However, the second phase of the algorithm, the re-
cursive FW-BW step, is scarcely parallelized even when
a large number of SCCs (e.g. 100,000) are identified in
this phase. In fact, especially when a large proportion of
nodes are processed in the second phase, such limited
parallelism diminishes the overall parallel speedup of
Method 1.

The

Giant

SCC

BW

FW

(a) (b)

Figure 3. SCC structure of small-world graphs: (a) when the
giant SCC is identified and removed, and (b) after the weakly
connected component detection algorithm has been applied.
Each polygon represents a small-sized SCC. In (a), same color
polygons belong to the same set.

The first clue for this phenomenon can be found
from the work queue logs; the recorded maximum
queue-depth with single threaded execution is only six,
indicating insufficient task-level parallelism. This was
counter-intuitive at first, because the FW-BW algorithm
is designed to produce three more tasks for each task
being processed. To understand why, again we must
consider the shape of small-world graphs.

Figure 3(a) depicts the small SCCs connected around
the giant SCC, as in a small-world graph, according to
previous studies [11], [17]. Now consider the moment
when the giant SCC has been identified by the FW-BW
algorithm. Ignoring non-connected SCCs for the time
being, the remaining SCCs are grouped into two sets
(colors): the FW-set and the BW-set. However, many of
these SCCs are not connected to each other. Therefore,
recursive application of the FW-BW algorithm to each
set (color) will only identify one SCC to which the
pivot belongs, but does not provide further partitioning.
Consequently, the execution is serialized.

Following is the log of the first five task executions in
the recursive FW-BW step when Method 1 is applied
to a large graph instance named Flickr (Section IV).
The SCC column indicates the size of SCC identified
in the iteration, and FW, BW, and Remain indicate
the resulting forward, backward, and remaining set
sizes, respectively. The log verifies that our observation
above indeed occurs in Method 1; each task execution
identifies only a small SCC and fails to create additional
tasks (i.e. FW set and BW set).

SCC FW BW Remain
2 0 0 125432
5 0 0 125427
11 0 0 125416
3 3 0 125410
...

The above observation, however, also suggests a way
to solve this problem. Once the giant SCC has been
identified, the remaining graph is composed of many
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Figure 4. Patterns of size-2 SCCs detected by Trim2. There
is a tight cycle between A and B but either (a) there are no
other outgoing edges from A and B, or (b) there are no other
incoming edges to A and B.

small components that are disconnected from each other.
Therefore, we identify all of the weakly connected
components (WCCs) over the whole graph in parallel,
and assign each WCC a different color. Each WCC
becomes a separate entry in the work queue, resulting
in a substantial improvement in the degree of task-level
parallelism in the recursive FW-BW phase. Figure 3(b)
illustrates this idea. Algorithm 6 details how to find
weakly connected components in parallel.

Algorithm 6: Par-WCC(G, Color)
forall n ∈ G, n not marked do in parallel

WCC(n)← n

repeat
forall n ∈ G, n not marked do in parallel

foreach k ∈ OutNbr(n) do
if WCC(k) < WCC(n)∧
Color(k) = Color(n) then

WCC(n)←WCC(k)

forall n ∈ G, n not marked do in parallel
k ←WCC(n)
if k 6= n ∧ WCC(k) 6= k then

WCC(n)←WCC(k)

until WCC not changed

D. Trim2: Fast Detection of Size-2 SCCs

We also add another fast parallel detection mecha-
nism for size-2 SCCs, namely Trim2. The idea is that
a large subset of size-2 SCCs can be detected easily by
looking only at the neighbors of a given node. Figure 4
illustrates the patterns of size-2 SCCs identified by this
algorithm. The algorithm first identifies all of the nodes
which have a single neighborhood node that is both an
incoming neighbor and an outgoing neighbor, i.e. the
shaded nodes in Figure 4. Then the algorithm examines
the original node’s sole neighbor. If the neighbor has
no incoming (or outgoing) edges other than to the
original node, the algorithm identifies these two nodes
as an SCC because there cannot be any larger cycle
that contains both these two nodes. The detailed Trim2
algorithm is summarized in Algorithm 8 in Appendix A.

E. Method 2: Putting It Together

Our Method 2, summarized in Algorithm 7, includes
all of the above steps applied one after another. Here,
Par-Trim′ includes the application of Par-Trim (iter-
atively), Par-Trim2 (only once), and Par-Trim (itera-
tively). We only apply Par-Trim2 once because it is
computationally more expensive than Par-Trim.

Algorithm 7: Method2(G, Color)
Par-Trim(G, Color) ; /* Parallel Trim */
Par-FW-BW(G, Color) ; /* Parallel FW-BW */
Par-Trim′(G, Color) ; /* Parallel Trim′ */
Par-WCC(G, Color) ; /* Parallel WCC */
begin recursion in parallel

FW-BW(G, Color, SCC) ; /* Recursive FW-BW */
end

IV. EXPERIMENTS

In this section, we evaluate the performance of our
methods on several large real-world graph instances
that are available from public repositories [21], [2]. We
have chosen graph instances that are large enough to
parallelize (i.e. more than 10 million edges). Table I
summarizes the size of each graph and provides a short
description of the graph instance.

We implement efficiently in C++ our two methods
and the Baseline algorithm from Section III and Tarjan’s
algorithm. There are several pitfalls in implementing
these algorithms and a careless implementation might
result in an order of magnitude lower performance. We
provide implementation notes for interested readers in
Appendix A.

All of our experiments were performed on a com-
modity server-class machine with two Intel Xeon X5550
(2.66GHz) CPUs, each of which has 4 cores and 8
hardware threads. There are in total 8MB of last-level
cache and 96 GB of main memory. For all implemen-
tations, we used OpenMP for the threading library and
compiled our code with g++ version 4.4.6 with the -
O3 option. Finally, our servers are running the Ubuntu
Linux (2.6.38) operating system.

The plots in Figure 5 summarize the performance
of our methods on the real-world graph instances in
Table I. The y-axis is the speedup against Tarjan’s
optimal sequential algorithm.

A first look over all instances (except CA-road, which
we will discuss later) reveals that our methods not only
improve the performance of the baseline implementation
of FW-BW-Trim algorithm, but also exploit a greater
degree of parallelism. Excluding CA-road, the speedup
result varies from 4.44x (Flickr) to 23.98x (Orkut)
using 8 cores and 16 hardware threads. The geometric
mean speedup is 9.85. Also, we can see that Method 2
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Name Description # Nodes # Edges Largest SCC Size Diameter

Livej Links in LiveJournal (Web) [5],[20] 4,848,571 68,993,773 3,828,682 18
Flickr Connection of Flickr users (Social) [24] 2,302,925 33,140,018 1,605,184 7
Baidu Links in Baidu Chinese online encyclopedia (Web) [25] 2,141,300 17,794,839 609,905 5
Wiki Links in English Wikipedia (Web) [4] 15,172,740 131,166,252 4,736,008 6
Friend* Connection of Friendster users (Social) [29] 124,836,180 1,806,067,135 46,941,703 25
Twitter Connection of Twitter users (Social) [18] 41,652,230 1,468,365,182 33,479,734 6
Orkut* Connection of Orkut users (Social) [29] 3,072,627 11,718,583 2,963,298 8
Patents Citation among US Patents [19] 3,774,768 16,518,948 1 22
CA-road* Road network of California [20] 1,965,206 5,533,214 1,168,580 850

Table I
REAL-WORLD GRAPH DATASETS USED IN THE EXPERIMENTS. * INDICATES THAT THE ORIGINAL GRAPH IS UNDIRECTED;

WE RANDOMLY ASSIGN A DIRECTION FOR EACH EDGE.

(a) Livej (b) Flickr (c) Baidu

(d) Wiki (e) Friend (f) Twitter

(e) Orkut (h) Patent (i) CA-road

Figure 5. Performance results on real-world graph instances: the y-axis is speedup compared to the optimal sequential algorithm
(i.e. Tarjan’s).

provides further performance improvement over Method
1 for certain graph instances.

To better understand this performance behavior, we
plot the execution time breakdown of each method for
all the graph instances in Figure 6. The y-axis in the
plots is the execution time measured in milliseconds.
Thus, each vertical bar segment represents the time
spent in each phase of the algorithm.

Figures 5 and 6 first show that the Baseline method
does not scale. As explained in Section III, the gigantic
SCC is processed by a singe thread and parallelism
is rarely exploited in the recursive FW-BW phase (the
topmost segment).

To the contrary, the parallel FW-BW phase of Method
1 (Section III-B) detects the largest SCC of the graph in
parallel, which is essential to achieve overall speedup.
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(a) Livej (b) Flickr (c) Baidu

(d) Wiki (e) Friend (f) Twitter

(e) Orkut (h) Patent (i) CA-road

Figure 6. Execution time breakdown for all methods on all graph instances. Par-Trim′ accounts for applying Trim only for
Method 1 but applying Trim, Trim2 and Trim in sequence for Method 2.

You can see this in Figure 6, where the second to bottom
segments scale down as we increase the number of
threads, representing a diminishing fraction of the total
execution time. Consequently, Method 1 provides a fair
amount of parallel speedup as shown in Figure 5.

Next we look at the cases where Method 2 pro-
vides an additional performance benefit over Method
1, including Livej, Flickr, and Baidu. Notice that in
Figure 6(b), the execution time of the recursive FW-
BW phase (the topmost segment) for Method 1 does not
scale down even with more threads. The reason for this
phenomenon has been explained in Section III-C: each
step in the recursive FW-BW phase does not partition
the remaining graph well, failing to provide sufficient
parallelism.

Figures 5 and 6 also confirm that Method 2 success-
fully solves this issue. As can be seen in Figure 6(b),
the execution time of the recursive FW-BW phase now

scales down in Method 2, after introduction of the par-
allel WCC phase. Our execution log also confirms that
at the beginning of the recursive FW-BW phase there
are about 10,000 work items in the queue. Moreover,
the parallel WCC phase itself is well parallelized, as
its execution time decreases with increasing number of
threads.

Therefore, the actual benefits of Method 2 over
Method 1 depend on the structure of the graph instance.
To illustrate this point, Figure 7 shows the fraction of
nodes that are SCC-identified by each phase. Notice-
ably, the more nodes identified by the recursive FW-
BW step, the more performance benefits are achieved
by Method 2.

Finally, we discuss the case of the CA-road graph.
The graph does not share the same characteristics as the
other graph instances because it is (almost) planar by its
nature. Therefore, the assumptions that we have made in
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Figure 7. Fraction of nodes whose SCC is identified at each
phase of execution.

Section III do not stand for this graph instance. First, the
graph has a large diameter (∼ 1000) and thus does not
possess the small-world property. Second, even though
the graph still has a giant SCC, it also has many more
large-sized SCCs than small-world graphs (see Figure 8
in Appendix A).

As a result, the parallel FW-BW step provides rather
limited parallel speedup in this case because the level-
synchronous BFS does not scale up well in such
graphs [15]. Moreover, the performance of Method 2
decreases as the execution time of the WCC algorithm
increases; the algorithm requires a large number of
iterations for convergence when applied on non-small-
world graphs.

Thus, both methods, although they still scale, do
not perform as well as Tarjan’s method. Nevertheless,
we remind the reader that in the common case, users
have a priori knowledge about the property of their
graphs, small-world or not. Also, small-world graphs
draw more research interest because they are the dom-
inant class of natural large graph instances for many
important applications where the graphs are constructed
by arbitrary relationships. For example, all of the large
graph instances other than the road networks, in public
repositories [21], [2] have the small-world property.

In summary, our experiments validate the success of
our methods in parallelizing SCC detection algorithms
for small-world graphs because our methods effectively
exploit fundamental characteristics of those graphs.

V. CONCLUSIONS

In this paper, we analyze the performance shortcom-
ings of the conventional FW-BW-Trim algorithm when

applied to small-world graph instances. We propose
three simple extensions to the conventional algorithm
that take advantage of small-world graph properties to
address the deficiencies in existing algorithms. Conse-
quently, our extensions result in significant parallel and
sequential performance improvements on small-world
graph instances to deliver state-of-the-art parallel SCC
detection performance.
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APPENDIX

Algorithm 8: Par-Trim2(G, Color)
foreach n ∈ G, n not marked do in parallel

if |InNbrG(n)| = 1 then
k ← the only InNbrG(n)
if k ∈OutNbrG(n) ∧ |InNbrG(k)| = 1) then

Color(n, k)← a new color; mark n, k;

if |OutNbrG(n)| = 1 then
k ← the only OutNbrG(n)
if k ∈InNbrG(n) ∧ |OutNbrG(k)| = 1) then

Color(n, k)← a new color; mark n, k;

Algorithm 8 shows the details of the Trim2 opera-
tion introduced in Section III-D. Unlike Trim, which
is applied multiple times iteratively, we apply Trim2
only once since it is computationally more expensive.
According to our experiments, although the Trim2 step
itself provides only a marginal speedup, it sometimes
reduces the execution time of the following WCC step
by up to 50% because it can cut out a long chain
of weakly connected size-2 SCCs. For this reason, we
include Trim2 for Method 2 only.

Figure 8 shows the SCC structure of all graphs used
in the experiments (Section IV). Notice that there is a
single giant connected component whose size is O(N),
the most frequent SCCs are size one, and there are SCCs
of other sizes in between, for all graph instances except
Patent.

Patent is a special case with no cycles in the graph.
However, this is a natural phenomenon due to the way
the graph is constructed: a patent can only cite other
patents that come before it, thus preventing any cycles.
Note that the SCC structure of this graph was identified
by the Trim operation (Section IV).

CA-road also shows a noticeably different distribu-
tion, since it is not a small-world graph. Having a large
diameter, the graph has many more non-trivial SCCs
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Figure 8. Distribution of SCC-sizes in experimental graph instances.

than the other graphs. Moreover, the size of these SCCs
is larger as well.

In this section, we discuss implementation issues for
all of the algorithms discussed in this paper.
Graph and Set Representation

We implemented all of the algorithms in the paper
using C++. For the in-memory graph data structure, we
used the compressed sparse row (CSR) adjacency matrix
data structure, which uses two arrays to represent the
graph. Note that CSR is favored in high performance
graph analysis problems [6], [15], [8] because it is
compact, memory bandwidth-friendly, and thus best
suited for graph traversals.

The CSR representation, however, performs poorly
when modifying the graph structure itself. Therefore,
instead of actually removing nodes that are trimmed
or whose SCCs are identified, we maintain an extra
O(N) integer array named Color. Whenever a node
is trimmed or its SCC identified, we assign a special
color (e.g. −1) to the position of the node in the array.
In the rest of the algorithm, nodes with this special color
value are always ignored.

The same Color array is used to represent disjoint
sets of nodes; i.e. the FW-set and BW-set in Algo-
rithm 1. Nodes having the same color, or a unique
number, are considered to be in the same set; this is
represented conceptually by coloring each set of the
graph with a different color. Therefore, neighborhood
nodes whose color is different from the current node
are considered detached.

Still, this approach presents an issue when selecting a
pivot from a specific set (Algorithm 1). To pick out any
one node in a specific subset (i.e. color), the complete
Color array must be scanned, which is a very expensive

operation.
Therefore, we take a hybrid approach; we maintain

both the set representation (i.e. std::set) and the Color
array. The former representation is used to choose pivots
in the FW-BW step, while the latter representation is
used to look up membership of a set. According to
our experiments, such a hybrid approach resulted ∼10x
better performance than using one representation only.

In addition, we also maintain a compact representa-
tion for non-marked nodes, i.e. nodes whose SCC has
not yet been identified. This compact representation is
used by Algorithms 3, 6, and 8 when those algorithms
iterate over all nodes that are not marked. Again, we use
a hybrid data structure for this representation: a vector
of nodes and a boolean array. The vector representation
is updated only when each trimming operation has
successfully cut out more than 10% of the previously
remaining nodes.
Implementing Tarjan’s and FW-BW Algorithms

The classic Tarjan’s SCC algorithm is based on a
DFS (depth-first search) traversal of the graph. However,
the required recursion depth for DFS traversal is the
size of the largest SCC, which is O(N) for large real-
world graphs. Thus, one must increase the size of the
program stack accordingly, to hundreds of MBs or even
a few GBs. Moreover, Tarjan’s algorithm requires an
extra stack (other than the program stack) on which the
IsIn operation is applied. Again, we use both a vector
and a boolean array for this stack for fast execution.

For the reachable set computation in the parallel FW-
BW step, we used an efficient implementation of the
breadth-first search (BFS) order graph traversal [15],
[10]. Note that after the advent of the graph500 bench-
mark suite [1], many efficient implementations of the
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BFS traversal have been proposed [23], [26], which may
improve our performance results even further.

On the other hand, for the same computation in the re-
cursive FW-BW step, we use DFS instead of BFS. This
is because the BFS implementation above, optimized
for parallel traversal, has a larger fixed cost than simple
sequential DFS. Also, during reachable set exploration
in the parallel FW-BW step, we do not maintain an
unbounded set representation (i.e. std::set), but use
the Color array only. This is based on the following
observations: (1) the traversal will go through a huge
fraction of nodes in the graph (i.e. O(N)) and thus the
size of each set (FW-set, BW-set, and remaining set)
will be large as well, and (2) those sets will be modified
by the following trimming and compacting operations.
Therefore, we defer the construction of sets until the
end of the trimming phase, when we perform a scan of
non-marked nodes to construct the initial work items.
Worker Threads and the Work Queue

For the threading library, we used OpenMP for all
experiments. As a reminder, we exploited data-level
parallelism in the first phase of our algorithms, but
task-level parallelism in the second phase. The data-
level parallelism is implemented with the parallel for

statement, and the task-level parallelism with a custom
work queue implementation.

For the data-level parallelism, however, it was critical
to specially handle the workload imbalance problem.
Note that there is another fundamental characteristic of
real-world graphs, the scale-free property, which means
that the graph’s degree distribution follows a power
law [7]. In other words, there exist a few nodes that have
a huge number of neighbors while many nodes have
only a few neighbors. Therefore, statically assigning the
same number of nodes to each thread naturally induces
workload imbalance if the work involves neighborhood
exploration. Thus, we used dynamic load-balancing for
the components that involve neighborhood exploration,
but static workload distribution otherwise.

For the task-level parallelism, we used our custom
work queue implementation, which is composed of two
levels of queues: a global queue and per-thread private
queues. Initially, each thread fetches up to K work items
from the global queue into its local queue; whenever
the local queue becomes empty, it fetches more work
from the global work queue. On the other hand, a newly
generated work item goes to a local queue first. When
the size of local queue grows to 2K, K items are moved
to the global queue. We set K to 1 for the Baseline and
Method 1, because those algorithms suffer from a lack
of task level parallelism; for Method 2, we set K to 8.
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